On Some Integral Equations
نویسندگان
چکیده
منابع مشابه
On Monotonic Solutions of Some Integral Equations
Integral equations arise naturally in applications of real world problems [5, 6, 7, 8]. The theory of integral equations has been well developed with the help of various tools from functional analysis, topology and fixed-point theory. The classical theory of integral equations can be generalized if one uses the Stieltjes integral with kernels dependent on one or two variables. The aim of this p...
متن کاملSome Integral Equations with Nonsymmetric Separable Kernels*
Absbact. It is shown that the eigeovalues and eigenfunctions for the class of "separable" or "semidegenerate" kernels can be determined from the solution of a linear differential equation, which is usually more amenable to machine solution. The theory is extended to solve a simultaneous diagonalization problem for two separable kernels. Finally, some new connections are obtained between Riccati...
متن کاملSome Problems in Nonlinear Volterra Integral Equations
Upper and lower bounds for the norm of solutions of systems of first order differential equations as well as theorems on global existence and boundedness and other useful results have recently been obtained by comparing solutions of the given system with those of a related (single) first order differential equation. This technique, which is essentially due to Conti [5] and Wintner [9], has been...
متن کاملSolutions of Some Dual Integral Equations
For certain dual integral equations involving trigonometric functions and the Bessel function of zeroth order as their kernels solution methods are described. These methods exploit the fact that, under certain circumstances of practical importance, one of the integrals of each set of the dual integral equations under consideration possesses a asquare-rooto singularity at the aturning pointo, i....
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Japanese journal of mathematics :transactions and abstracts
سال: 1935
ISSN: 0075-3432,1861-3624
DOI: 10.4099/jjm1924.12.0_81